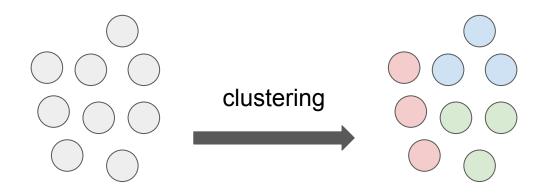
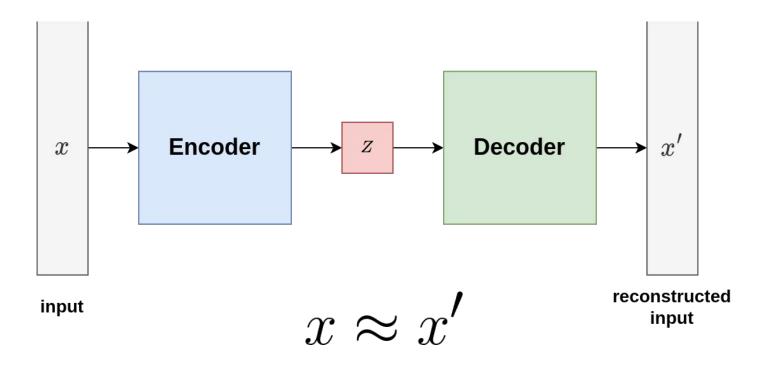
Deep Clustering based on a Mixture of Autoencoders

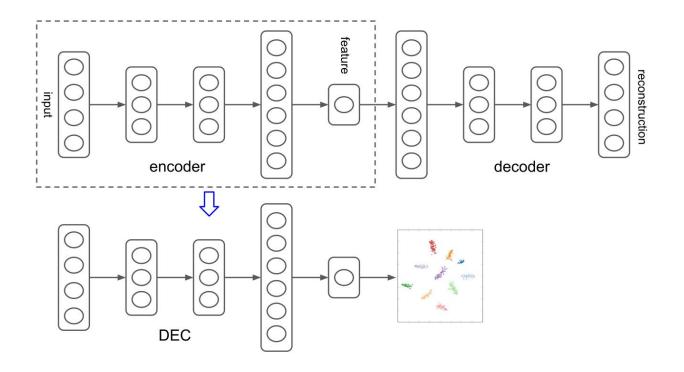
Advisor: Jia-Ling, Koh Speaker: Zi-Xin Chen Source: IEEE'19 Date: 2022/09/13

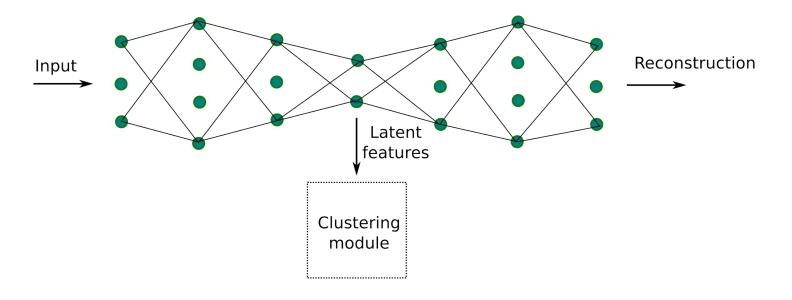

Outline

- Introduction
- Method
- Experiment
- Conclusion


Introduction

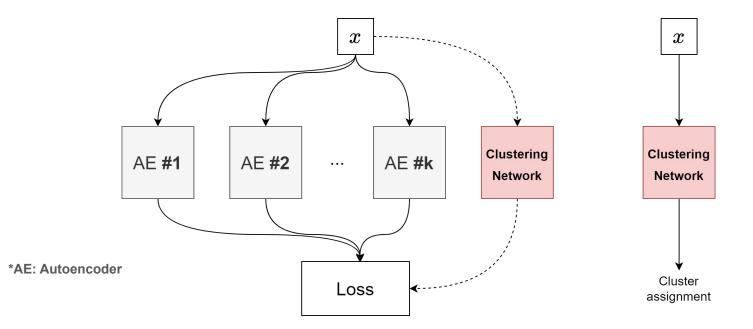
Clustering


• During clustering process, similar items are grouped together and distinct samples are separated


Autoencoder

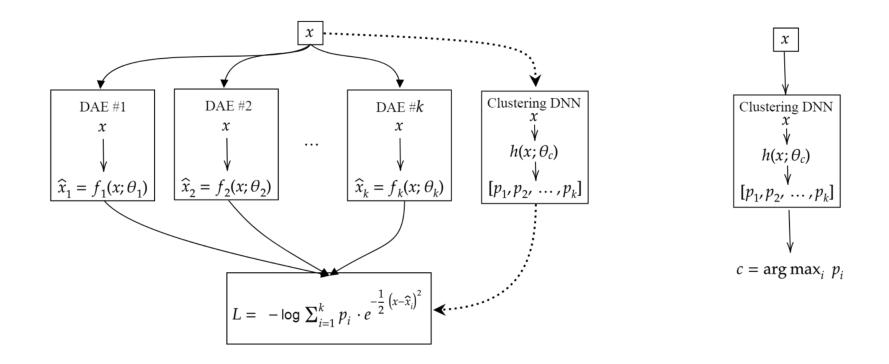
DEC - Deep Embedded Clustering (2016)

DCN - Deep Clustering Network (2017)

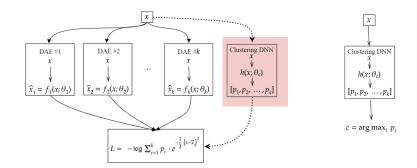

Loss = reconstruction error + clustering error

Problem

• Features are collapsed to a single point in the embedded space


Deep Autoencoder MIxture Clustering (DAMIC)

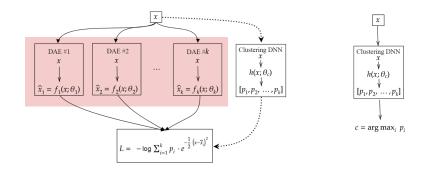
• Each cluster is represented by an autoencoder neural network



Method

Architecture

Clustering Network

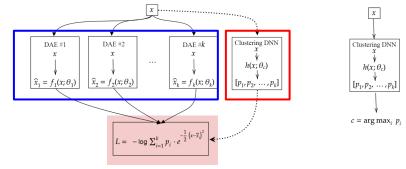


Soft cluster assignment:

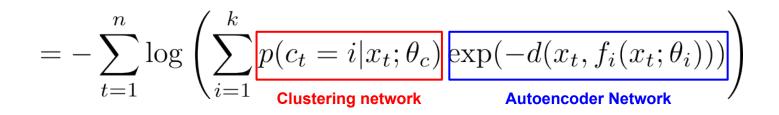
Clustering network

$$p(c = i | x; \theta_c) = \frac{\exp(w_i h(x) + b_i)}{\sum_{j=1}^k \exp(w_j h(x) + b_j)}, \quad i = 1, \dots, k$$

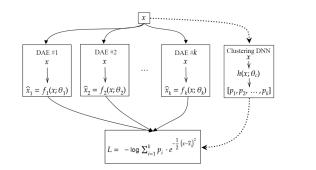
Autoencoder Network

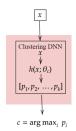


Reconstruction error:

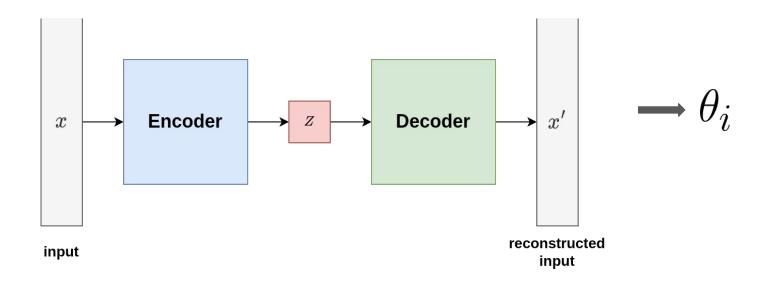

$$d(x_t, f_i(x_t; \theta_i)) = \frac{1}{2} ||x_t - f_i(x_t; \theta_i)||^2$$

Autoencoder of i-th cluster

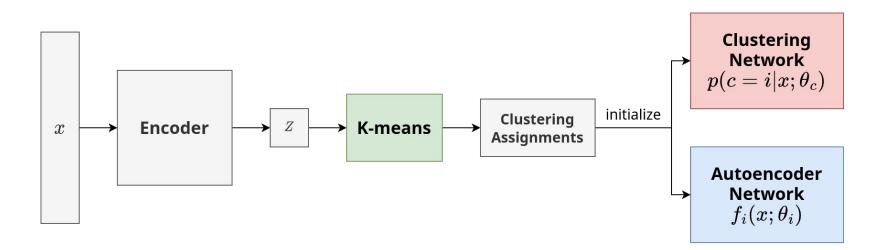

Loss function



 $L(\theta_1,\ldots,\theta_k,\theta_c)$



$$\hat{c} = \arg \max_{i=1}^{k} p(c = i | x; \theta_c) = \arg \max_{i=1}^{k} (w_i h(x) + b_i)$$


Pre-training

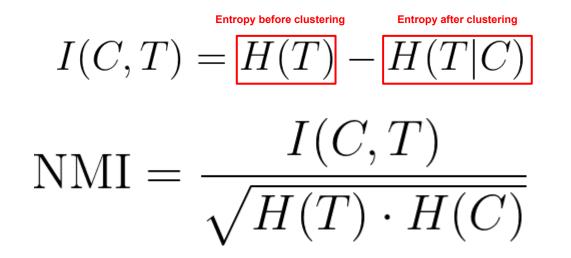
• Train a single autoencoder for the **entire dataset**

Pre-training

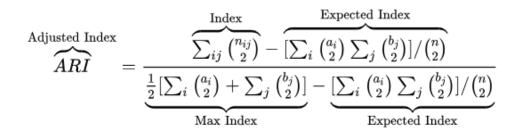
- Apply k-means algorithm in the embedded space
- Use the k-means clustering to **initialize** the network parameters

Experiment

Dataset


Image				
MNIST	70000 images	10 classes		
Fashion	70000 images	10 classes		

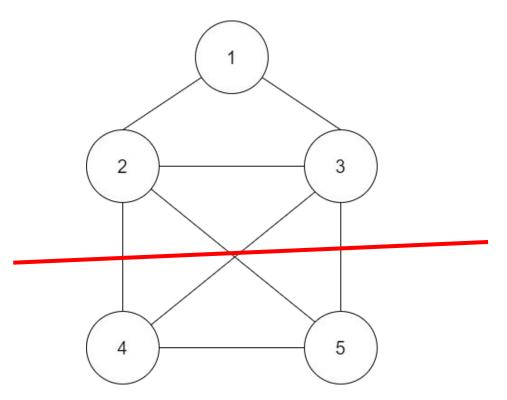
Text				
20NEWS	18846 documents (only use 2000 words)	20 groups		
RCV1	365968 documents (only use 2000 words)	20 topics		


Evaluation measures

- NMI
- ARI
- ACC

NMI

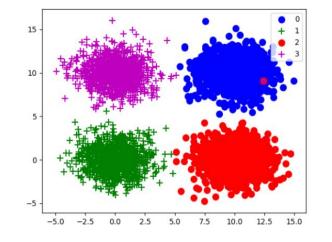
ARI	X^Y	Y_1	Y_2		Y_s	sums
	X_1	n_{11}	n_{12}		n_{1s}	a_1
	X_2	n_{21}	n_{22}	•••	n_{2s}	a_2
TP + TN	÷	÷	÷	۰.	÷	÷
$MI = \frac{1}{TP + FP + TN + FN}$	X_r	n_{r1}	n_{r2}		n_{rs}	a_r
	sums	b_1	b_2	• • •	b_s	



 $AC = \frac{\delta(s_i, \max(r_i))}{N}$

Baseline Methods

- K-means
- Spectral Clustering
- DAE + KM
- DCN
- DEC


Spectral Clustering

Synthetic dataset

$$x_t = (\sigma(W \cdot v_t))^2 \ t = 1, ..., n$$

 v_t is the *t*-th point in the latent domain

(a) Latent domain, v.

Synthetic dataset

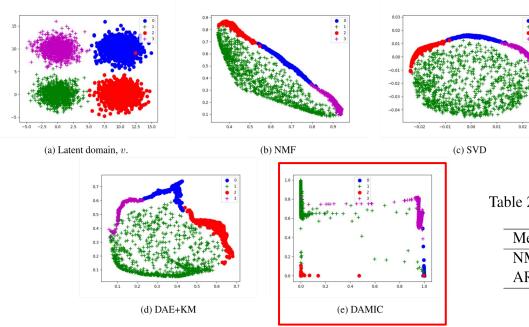
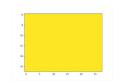
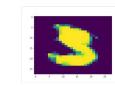



Table 2: Objective measures for the synthetic database.

Μ	ethod	DAMIC	DAE+KM	SC	KM
N	MI	0.94	0.83	0.82	0.80
Al	RI	0.96	0.84	0.83	0.81

(a) Input


(d) DAE #2

(b) DAE #0

(g) DAE #5

(c) DAE #1

(h) DAE #6

(e) DAE #3

(j) DAE #8

(f) DAE #4

(k) DAE #9

Figure 3: The outputs of the different DAEs with a vector of all-ones input.

(i) DAE #7

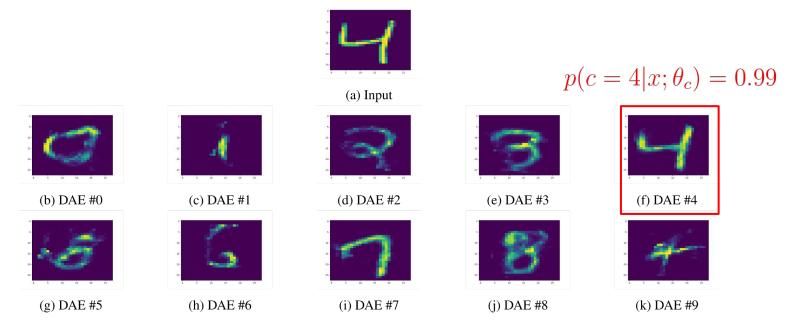


Figure 4: An example of the outputs of the different DAEs with the digit '4' as the input.

Method	DAMIC	DCN	DAE+KM	DEC	KM
NMI	0.87	0.81	0.74	0.80	0.50
ARI	0.81	0.75	0.67	0.75	0.37
ACC	0.89	0.83	0.80	0.84	0.53

Table 3: Objective measures of the MNIST database.

Table 4: Objective measures of the Fashion database.

Method	DAMIC	DCN	DAE+KM	DEC	KM
NMI	0.65	0.55	0.60	0.54	0.51
ARI	0.49	0.42	0.45	0.40	0.37
ACC	0.60	0.50	0.57	0.51	0.47

Table 5: Objective measures of the 20NEWS database.

Method	DAMIC	DCN	DAE+KM	SC	KM
NMI	0.57	0.48	0.47	0.40	0.41
ARI	0.42	0.34	0.28	0.17	0.15
ACC	0.56	0.44	0.42	0.34	0.30

Table 6: Objective measures of the RCV1 database.

Method	DAMIC	DCN	DAE+KM	DEC	KM
NMI	0.62	0.61	0.59	0.08	0.58
ARI	0.41	0.33	0.33	0.01	0.29
ACC	0.47	0.47	0.46	0.14	0.47

Table 7: Ablation study on the MNIST database.

Method	DAMIC	Pre-training only	Joint-training only	KM
NMI	0.87	0.74	0.71	0.50
ARI	0.81	0.67	0.53	0.37
ACC	0.89	0.80	0.60	0.53

Conclusion

Conclusion

- Proposed a clustering technique that use autoencoder to represent cluster instead of single centroid vector, which enables a much richer representation of each cluster
- The proposed clustering technique can avoid data collapsing problem